According to the prevailing scientific model of the Universe, known as the Big Bang, the Universe expanded from an extremely hot, dense phase called thePlanck epoch, in which all the matter and energy of the observable Universe was concentrated. Since the Planck epoch, the Universe has been expandingto its present form, possibly with a brief period (less than 10−32 seconds) of cosmic inflation. Several independent experimental measurements support this theoretical expansion and, more generally, the Big Bang theory. Recent observations indicate that this expansion is accelerating because of dark energy, and that most of the matter in the Universe may be in a form which cannot be detected by present instruments, called dark matter. The common use of the "dark matter" and "dark energy" placeholder names for the unknown entities purported to account for about 95% of the mass-energy density of the Universe demonstrates the present observational and conceptual shortcomings and uncertainties concerning the nature and ultimate fate of the Universe.
Current interpretations of astronomical observations indicate that the age of the Universe is 13.772 ± 0.059 billion years, (whereas the decoupling of light and matter, see CMBR, happened already 380,000 years after the Big Bang), and that the diameter of the observable Universe is at least 93 billion light years or 8.80×1026 meters. According to general relativity, space can expand faster than the speed of light, although we can view only a small portion of the Universe due to the limitation imposed by light speed. Since we cannot observe space beyond the limitations of light (or any electromagnetic radiation), it is uncertain whether the size of the Universe is finite or infinite.
No comments:
Post a Comment